一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是 ;
(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.
(1)解不等式组:
(2)解方程:
如图,在矩形ABCD中,AB=8,BC=6,点O为对角线BD的中点,点P从点A出发,沿折线AD-DO以每秒1个单位长度的速度向终点O运动,当点P与点A不重合时,过点P作PQ⊥AB于点Q,以PQ为边向右作正方形PQMN,设正方形PQMN与△ABD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)求点N落在BD上时t的值;
(2)直接写出点O在正方形PQMN内部时t的取值范围;
(3)当点P在折线AD-DO上运动时,
①求S与t之间的函数关系式;
②直接写出DN平分△BCD面积时t的值.
如图,已知抛物线y=x2+bx+c交x轴正半轴于点A(4,0),交y轴于点B(0,-4).
(1)求b、c的值;
(2)若M为AB中点,∠PMQ在AB的同侧以M为中心旋转,且∠PMQ=45°,MP交x轴于点D,MQ交y轴于点E,设AD的长为m(m>0),BE的长为n,求n和m之间的函数关系式;
(3)当m,n为何值时,∠PMQ的边经过抛物线与x轴的另一个交点.
如图,已知在等腰△ABC中,AB=AC=10,BC=12,点D为BC边上一动点(不与点B重合)过点D作射线交AB于点E ,∠BDE=∠A,以点D为圆心,DC的长为半径作⊙D.
(1)设BD=x,AE=y,求y与x的函数关系式,并写出x的取值范围;
(2)当 y =2时,判断⊙D与AB的位置关系,并说明理由.
在某次反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方2000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)