如图1,在平面直角坐标系 中,已知点 和点 的坐标分别为 , ,将 绕点 按顺时针方向分别旋转 , 得到 △ , .抛物线 经过点 , , ;抛物线 经过点 , , .
(1)点 的坐标为 ,点 的坐标为 ;抛物线 的解析式为 .抛物线 的解析式为 ;
(2)如果点 是直线 上方抛物线 上的一个动点.
①若 时,求 点的坐标;
②如图2,过点 作 轴的垂线交直线 于点 ,交抛物线 于点 ,记 ,求 与 的函数关系式,当 时,求 的取值范围.
“绿水青山就是金山银山”,随着生活水平的提高,人们对饮水品质的需求越来越高,孝感市槐荫公司根据市场需求代理 , 两种型号的净水器,每台 型净水器比每台 型净水器进价多200元,用5万元购进 型净水器与用4.5万元购进 型净水器的数量相等.
(1)求每台 型、 型净水器的进价各是多少元?
(2)槐荫公司计划购进 , 两种型号的净水器共50台进行试销,其中 型净水器为 台,购买资金不超过9.8万元.试销时 型净水器每台售价2500元, 型净水器每台售价2180元,槐荫公司决定从销售 型净水器的利润中按每台捐献 元作为公司帮扶贫困村饮水改造资金,设槐荫公司售完50台净水器并捐献扶贫资金后获得的利润为 ,求 的最大值.
已知关于 的一元二次方程 .
(1)试证明:无论 取何值此方程总有两个实数根;
(2)若原方程的两根 , ,满足 ,求 的值.
如图, 中, ,小聪同学利用直尺和圆规完成了如下操作:
①作 的平分线 交 于点 ;
②作边 的垂直平分线 , 与 相交于点 ;
③连接 , .
请你观察图形解答下列问题:
(1)线段 , , 之间的数量关系是 ;
(2)若 ,求 的度数.
在孝感市关工委组织的“五好小公民”主题教育活动中,我市蓝天学校组织全校学生参加了“红旗队飘,引我成长”知识竞赛,赛后机抽取了部分参赛学生的成绩,按从高分到低分将成绩分成 , , , , 五类,绘制成下面两个不完整的统计图:
根据上面提供的信息解答下列问题:
(1) 类所对应的圆心角是 度,样本中成绩的中位数落在 类中,并补全条形统计图;
(2)若 类含有2名男生和2名女生,随机选择2名学生担任校园广播“孝心伴我行”节目主持人,请用列表法或画树状图法求恰好抽到1名男生和1名女生的概率.