己知圆和直线,在轴上有一点,在圆上有不与重合的两动点,设直线斜率为,直线斜率为,直线斜率为,(l)若①求出点坐标;②交于,交于,求证:以为直径的圆,总过定点,并求出定点坐标.(2)若:判断直线是否经过定点,若有,求出来,若没有,请说明理由.
(本小题12分)已知,求下列各式的值: (1);(2).
(本小题12分)已知集合,集合是函数的定义域,, . (1)求; (2)求;(3)如果,求的取值范围
(本小题12分)计算下列各式的值: (1);(2)
已知幂函数,且在上单调递增. (Ⅰ)求实数的值,并写出相应的函数的解析式; (II)若在区间上不单调,求实数的取值范围; (III)试判断是否存在正数,使函数在区间上的值域为. 若存在,求出的值;若不存在,请说明理由
已知函数,且. (Ⅰ)判断的奇偶性并说明理由; (Ⅱ)判断在区间上的单调性,并证明你的结论; (Ⅲ)若在区间上,不等式恒成立,试确定实数的取值范围.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号