带电量为Q,质量为m的原子核由静止开始经电压为U1的电场加速后从中心进入一个平行板电容器,进入时速度和电容器中的场强方向垂直。已知:电容器的极板长为L,极板间距为d,两极板的电压为U2,重力不计,求:
(1)经过加速电场后的速度;
(2)离开电容器电场时的偏转量。
用L=30cm的细线将质量为4×10-3㎏的带电小球P悬挂在O点下,当空中有方向为水平向右,大小为1×104N/C的匀强电场时,小球偏转37°后处在静止状态。
(1)分析小球的带电性质;
(2)求小球的带电量;
(3)求细线的拉力。
根据玻尔理论,电子绕氢原子核运动可以看作是仅在库仑引力作用下的匀速圆周运动,已知电子的电荷量为e,质量为m,电子在第1轨道运动的半径为r1,静电力常量为k。
(1)电子绕氢原子核做圆周运动时,可等效为环形电流,试计算电子绕氢原子核在第1轨道上做圆周运动的周期及形成的等效电流的大小;
(2)氢原子在不同的能量状态,对应着电子在不同的轨道上绕核做匀速圆周运动,电子做圆周运动的轨道半径满足rn=n2r1,其中n为量子数,即轨道序号,rn为电子处于第n轨道时的轨道半径。电子在第n轨道运动时氢原子的能量En为电子动能与“电子-原子核”这个系统电势能的总和。理论证明,系统的电势能Ep和电子绕氢原子核做圆周运动的半径r存在关系:Ep=-k(以无穷远为电势能零点)。请根据以上条件完成下面的问题。
①试证明电子在第n轨道运动时氢原子的能量En和电子在第1轨道运动时氢原子的能量E1满足关系式
②假设氢原子甲核外做圆周运动的电子从第2轨道跃迁到第1轨道的过程中所释放的能量,恰好被量子数n=4的氢原子乙吸收并使其电离,即其核外在第4轨道做圆周运动的电子脱离氢原子核的作用范围。不考虑电离前后原子核的动能改变,试求氢原子乙电离后电子的动能。
为减少烟尘排放对空气的污染,某同学设计了一个如图所示的静电除尘器,该除尘器的上下底面是边长为L=0.20m的正方形金属板,前后面是绝缘的透明有机玻璃,左右面是高h=0.10m的通道口。使用时底面水平放置,两金属板连接到U=2000V的高压电源两极(下板接负极),于是在两金属板间产生一个匀强电场(忽略边缘效应)。均匀分布的带电烟尘颗粒以v=10m/s的水平速度从左向右通过除尘器,已知每个颗粒带电荷量 q=+2.0×10-17C,质量m=1.0×10-15kg,不考虑烟尘颗粒之间的相互作用和空气阻力,并忽略烟尘颗粒所受重力。在闭合开关后:
(1)求烟尘颗粒在通道内运动时加速度的大小和方向;
(2)求除尘过程中烟尘颗粒在竖直方向所能偏转的最大距离;
(3)除尘效率是衡量除尘器性能的一个重要参数。除尘效率是指一段时间内被吸附的烟尘颗粒数量与进入除尘器烟尘颗粒总量的比值。试求在上述情况下该除尘器的除尘效率;若用该除尘器对上述比荷的颗粒进行除尘,试通过分析给出在保持除尘器通道大小不变的前提下,提高其除尘效率的方法。
如图所示,水平轨道与竖直平面内的圆弧轨道平滑连接后固定在水平地面上,圆弧轨道B端的切线沿水平方向。质量m=1.0kg的滑块(可视为质点)在水平恒力F=10.0N的作用下,从A点由静止开始运动,当滑块运动的位移x=0.50m时撤去力F。已知A、B之间的距离x0=1.0m,滑块与水平轨道间的动摩擦因数μ=0.10,取g=10m/s2。求:
(1)在撤去力F时,滑块的速度大小;
(2)滑块通过B点时的动能;
(3)滑块通过B点后,能沿圆弧轨道上升的最大高度h=0.35m,求滑块沿圆弧轨道上升过程中克服摩擦力做的功。