(本小题满分16分)设等比数列的首项为
,公比为
(
为正整数),且满足
是
与
的等差中项;数列
满足
(
).
(1)求数列的通项公式;
(2)试确定的值,使得数列
为等差数列;
(3)当为等差数列时,对每个正整数
,在
与
之间插入
个2,得到一个新数列
. 设
是数列
的前
项和,试求满足
的正整数
.
(本小题满分16分)已知为椭圆:
上任一点,
为椭圆的左、右焦点,
,离心率为
.
(1)求椭圆的方程;
(2)若直线与椭圆交于
两点,且线段AB的中点
在直线
上,
为坐标原点,求三角形
面积
的最大值.
(本小题满分14分)如图,半径为r的圆M与正三角形ABC的两边AB,AC相切,且与圆弧BEC相切.圆M与OA相交于E,N两点.已知圆弧BEC所在圆半径为R,圆心为O.
(1)求的最大值;
(2)若求DN的最大值.
(本小题满分14分)如图四棱锥P-ABCD中,底面ABCD是菱形,∠BAD=60°,AD=1,侧面PAD是正三角形,且与底面ABCD垂直,Q是AD的中点.
(1)求四棱锥P-ABCD的体积;
(2)M在线段PC上,PM=tPC,问线段BC上是否存在一点R,使得当t∈(0,1)时,总有BQ∥平面MDR?若存在,确定R点位置;若不存在,请说明理由.
(本小题满分14分)在平面直角坐标系中,角
的终边经过点
.
(1)求的值;
(2)若关于
轴的对称点为
,求
的值.