已知:如图1,在△ABC中,A、B、C的坐标分别为(1,0),(4,0),(0,2),点M为边BC上的中点,点N为边AB 上一点,且N的横坐标为方程2n2+5n-12=0一个根,
(1)求N的坐标和直线MN的解析式 ;(3+3)
(2)判断直线MN与BC的位置关系,并说明你的理由;(1+3)
(3)如图2,①在图2中作出△ABC的外接圆;②过Q(,0)作直线
⊥x轴,点P在直线
上,且在第一象限,试确定一个点P,使得∠CPB+∠CAB=180°,求出满足条件的P点坐标.
如图,在Rt△ABC中,∠ACB=90°,E是BC的中点,以AC为直径的⊙O与AB边交于点D,连接DE
(1)求证:△ABC∽△CBD;
(2)求证:直线DE是⊙O的切线.
甲乙两人玩一种游戏:三张大小、质地都相同的卡片上分别标有数字1,2,3,现将标有数字的一面朝下,洗匀后甲从中任意抽取一张,记下数字后放回;又将卡片洗匀,乙也从中任意抽取一张,计算甲乙两人抽得的两个数字之积,如果积为奇数则甲胜,若积为偶数则乙胜.
(1)用列表或画树状图等方法,列出甲乙两人抽得的数字之积所有可能出现的情况;
(2)请判断该游戏对甲乙双方是否公平?并说明理由.
如图,在 中, , ,
(1)求作
,使它过点
、
、
(要求:尺规作图,保留作图痕迹,不写作法);
(2)在(1)所作的圆中,求出劣弧
的长.
小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.
已知:如图,在△ABC中,DE、DF是△ABC的中位线,连接EF、AD,其交点为O.求证:
(1)△CDE≌△DBF;
(2)OA=OD.