游客
题文

已知二次函数
(1)求证:不论为何实数,此二次函数的图象与轴都有两个不同交点;
(2)若此函数有最小值,求这个函数表达式.

科目 数学   题型 解答题   难度 中等
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

(本小题满分6分)计算:已知二次函数
(1)画出图像,指出对称轴,顶点,求出何时y随x的增大而减小;
(2)写出不等式≥0的解集。

.如图,在平面直角坐标系中,点的坐标为,点轴的正半轴上,为△的中线,过两点的抛物线轴相交于两点(的左侧).

(1)求抛物线的解析式;
(2)等边△的顶点在线段上,求的长;
(3)点为△内的一个动点,设,请直接写出的最小值,以及取得最小值时,线段的长.

.如图,已知抛物线经过点,抛物线的顶点为,过作射线.过顶点平行于轴的直线交射线于点轴正半轴上,连结

(1)求该抛物线的解析式;
(2)若动点从点出发,以每秒1个长度单位的速度沿射线运动,设点运动的时间为.问当为何值时,四边形分别为平行四边形?直角梯形?等腰梯形?
(3)若,动点和动点分别从点和点同时出发,分别以每秒1个长度单位和2个长度单位的速度沿运动,当其中一个点停止运动时另一个点也随之停止运动.设它们的运动的时间为,连接,当为何值时,四边形的面积最小?并求出最小值及此时的长.

.如图,已知抛物线与轴交于点,与轴交于点

(1)求抛物线的解析式及其顶点的坐标;
(2)设直线轴于点.在线段的垂直平分线上是否存在点,使得点到直线的距离等于点到原点的距离?如果存在,求出点的坐标;如果不存在,请说明理由;
(3)过点轴的垂线,交直线于点,将抛物线沿其对称轴平移,使抛物线与线段总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?

.如图1,已知直线y=2x(即直线l1)和直线y=—x+4(即直线l2),l2与x轴相交于点A.点P从原点O出发,向x轴的正方向作匀速运动,速度为每秒1个单位,同时点Q从A点出发,向x轴的负方向作匀速运动,速度为每秒2个单位.设运动了t秒.

(1)求这时点P、Q的坐标(用t表示).
(2)过点P、Q分别作x轴的垂线,与l1、l2分别相交于点O1、O2(如图1).
以O1为圆心、O1P为半径的圆与以O2为圆心、O2Q为半径的圆能否相切若能,求出t值;若不能,说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号