(本小题满分10分)如图所示,AB=AC,AB为⊙O的直径,AC、BC分别交⊙O于E、D,连结ED、BE.
(1)试判断DE与BD是否相等,并说明理由;
(2)如果BC=6,AB=5,求BE的长.
如图,已知:AB∥CD,BE⊥AD,垂足为点E,CF⊥AD,垂足为点F,并且AE="DF" .
求证:四边形BECF是平行四边形.
△OAB的坐标分别为O(0,0),A(0,4),B(3,0),以原点为位似中心,在第一象限将△OAB扩大,使变换得到的△OEF与△OAB对应边的比为2∶1,
(1)画出△OEF;
(2)求四边形ABFE的面积.
先化简,再求值:,其中a=
-1,b=
.
如图,抛物线与
轴交于A、B两点,与y轴交于点
C(0,-1).且对称轴为.
(1)求抛物线的解析式及A、B两点的坐标;
(2)点D在x轴下方的抛物线上,则四边形ABDC的面积是否存在最大值,若存在,求出此时点D的坐标;若不存在,请说明理由;
(3)点Q在y轴上,点P在抛物线上,要使Q、P、A、B为顶点的四边形是平行四边形,求出所有满足条件的点P的坐标.
如图,已知正方形ABCD,点E是边AB上一点,点O是线段AE上的一个动点(不与A、E重合),以O为圆心,OB为半径的圆与边AD相交于点M,过点M作⊙O的切线交DC于点N,连结OM、ON、BM、BN.
求证:(1)△AOM∽△DMN; (2)求∠MBN的度数.