游客
题文

(·辽宁大连)如图,在平面坐标系中,∠AOB=90°,AB∥x轴,OB=2,双曲线y=经过点B.将△AOB绕点B逆时针旋转,使点O的对应点D落在X轴的正半轴上.若AB的对应线段CB恰好经过点O.

(1)点B的坐标和双曲线的解析式.
(2)判断点C是否在双曲线上,并说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,正方形OABC的面积为9,点O为坐标原点B在函数的图象上,点P(m,n)在的图象上任意一点,过P分别作x轴y轴的垂线,垂足分别是E,F,并设长方形OEPF和正方形OABC不重合部分的的面积为S。(提示,P可以在B的上下两侧)。

(1)求B点坐标和k的值;
(2)当S=时,求P点的坐标;
(3)求出S关于m的函数解析式。

[问题情境] 勾股定理是一条古老的数学定理,它有很多证明方法,我国汉代数学家赵爽根据弦图利用面积法进行证明,著名数学家华罗庚曾提出把“数形关系”带到其他星球作为地球人与其他星球“人”进行第一次“谈话”的语言。
[定理表述] 请你根据图(1)中的直角三角形叙述勾股定理(用文字及符号语言叙述);
                                        

[尝试证明] 以图(1)中的直角三角形为基础可以构造出以a、b为底,以a+b为高的直角梯形如图(2)。请你利用图(2)验证勾股定理;
[知识拓展] 利用图(2)的直角梯形,我们可以证明,其证明步骤如下:
∵BC=a+b,AD=  .
又∵在直角梯形ABCD中有直角腰BC    斜腰AD(填“>”,“<”或“=”),即       

某商店一次用600元购进2B铅笔若干枝,第二次又用600元购进该款铅笔,但这次每支进价是第一次进价的倍,购进数量比第一次少30支。
(1)求第一次每支铅笔的进价是多少元?
(2)若要求这两次购进的铅笔按同一价格全部销售完毕,获利不低于420元,问每支售价至少是多少元?

如图,铁路上A、B两点相距25km,C、D为两村庄,且DA⊥AB于A,CB⊥AB于B,若DA=10km,CB=15km,现在要在AB之间建一个中转站E,使C、D两村到E站的距离相等。求E应建在离A多远的地方?

化简求值:
①简代数式,并从-1≤x≤2中选择一个你喜欢的整数代入,求出代数式的值;
②已知,求有理数A、B的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号