(·辽宁大连)如图,在△ABC中,点D、E、F分别在AB、BC、AC上,且∠ADF+∠DEC=180°,∠AFE=∠BDE.
(1)如图1,当DE=DF时,图1中是否存在于AB相等的线段?若存在,请找出并加以证明.若不存在说明理由.
(2)如图2,当DE=kDF(其中0<k<1)时,若∠A=90°,AF=m,求BD的长(用含k,m的式子表示).
已知关于的一元二次方程
有两个不相等的实数根.
(1)求的取值范围;
(2)若为正整数,求该方程的根.
先化简:,再选取一个合适的a值代入计算.
(1)计算:+
﹣sin45°
(2)化简:
(14’)如图,在平面直角坐标系中,A、B为
轴上两点,C、D为
轴上的两点,经过点A、C、B的抛物线的一部分C1与经过点A、D、B的抛物线的一部分C2组合成一条封闭曲线,我们把这条封闭曲线称为“蛋线”.已知点C的坐标为(0,
),点M是抛物线C2:
(
<0)的顶点.
(1)求A、B两点的坐标;
(2)“蛋线”在第四象限上是否存在一点P,使得△PBC的面积最大?若存在,求出△PBC面积的最大值;若不存在,请说明理由;
(3)当△BDM为直角三角形时,求的值.
(10’)设xi(i=1,2,3, ,n)为任意代数式,我们规定:y=max{x1,x2,x3,…,xn}表示x1,x2,…,xn中的最大值,如y=max{1,2}=2.
(1)求y=max{x,3};
(2)借助函数图象,解决以下问题:
①解不等式 max{x+1,}≥2;
②若函数y=max{|x﹣1|,x+a,x2﹣4x+3}的最小值为1,求实数a的值.