两个三角板ABC,DEF,按如图所示的位置摆放,点B与点D重合,边AB与边DE在同一条直线上(假设图形中所有的点,线都在同一平面内).其中,∠C=∠DEF=90°,∠ABC=∠F=30°,AC=DE=6cm.现固定三角板DEF,将三角板ABC沿射线DE方向平移,当点C落在边EF上时停止运动.设三角板平移的距离为x(cm),两个三角板重叠部分的面积为y(cm2).
(1)当点C落在边EF上时,x= cm;
(2)求y关于x的函数解析式,并写出自变量x的取值范围;
(3)设边BC的中点为点M,边DF的中点为点N.直接写出在三角板平移过程中,点M与点N之间距离的最小值.
在一个不透明的口袋中装有三个小球,分别标记数字1、2、3,每个小球除数字不同外其余均相同.小明和小亮玩摸球游戏,两人各摸一个球,谁摸到的数字大谁获胜,摸到相同数字记为平局.小明从口袋中摸出一个小球记下数字后放回并搅匀,小亮再从口袋中摸出一个小球.用画树状图(或列表)的方法,求小明获胜的概率.
先化简,再求值: ,其中 .
已知二次函数 .
(1)若 , ,求方程 的根的判别式的值;
(2)如图所示,该二次函数的图象与 轴交于点 , 、 , ,且 ,与 轴的负半轴交于点 ,点 在线段 上,连接 、 ,满足 , .
①求证: ;
②连接 ,过点 作 于点 ,点 在 轴的负半轴上,连接 ,且 ,求 的值.
如图所示, 是 的直径,点 、 是 上不同的两点,直线 交线段 于点 、交过点 的直线 于点 ,若 ,且 .
(1)求证:直线 是 的切线;
(2)连接 、 、 、 ,若 .
①求证: ;
②过点 作 ,交线段 于点 ,点 为线段 的中点,若 ,求线段 的长度.
如图所示,在平面直角坐标系 中,一次函数 的图象 与函数 的图象(记为 交于点 ,过点 作 轴于点 ,且 ,点 在线段 上(不含端点),且 ,过点 作直线 轴,交 于点 ,交图象 于点 .
(1)求 的值,并且用含 的式子表示点 的横坐标;
(2)连接 、 、 ,记 、 的面积分别为 、 ,设 ,求 的最大值.