游客
题文

(·辽宁朝阳)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.
 
[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌            ,得EH=ED.
在Rt△HBE中,由        定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是                               
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,△ABC与△ADE都是等边三角形(三条边都相等,三个内角都相等的三角形),连结BD、CE交点记为点F.
(1)BD与CE相等吗?请说明理由.
(2)你能求出BD与CE的夹角∠BFC的度数吗?
(3)若将已知条件改为:四边形ABCD与四边形AEFG都是正方形,连结BE、DG交点记为点M(如图).请直接写出线段BE和DG之间的关系?

某公园门票是每人15元,若超过10人,可购买团体票,票价如下:

购买人数(人)
10-50
51-100
100以上
每人门票价(元)
13
11
9

有甲、乙两个旅游团,若分别购买门票,两团总计应付1314元;若合在一起购买门票,总计应付1008元,问这两个旅游团各有多少人?

一个不透明的口袋里装有红、白、黄三种颜色的乒乓球(除颜色外其余都相同),其中有白球2个,黄球1个.
(1)若口袋中有3个红球,求从任意摸出一个球是白球的概率,并用列表或画树状图的方法说明;
(2)若从袋中任意摸出一球,摸到白球的概率为,求口袋中红球的个数.

在所给的网格图(每小格边长均为1的正方形)中,完成下列各题:
(1)将△ABC向右平移4个单位得到△A1B1C1
(2)以直线为对称轴作△ABC的轴对称图形△
(3)△可以看作是由△A1B1C1先向左平移4个单位,再以直线为对称轴作轴对
称变换得到的。除此以外,△还可以看作是由△A1B1C1经怎样变换得到的?请选择一种方法,写出图形变换的步骤。

如图,在△ABC和△DEF中,∠A=∠D,AC=DF,AE=BD,请说明∠C=∠F的理由。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号