(·黑龙江大庆)如图,△ABC中,∠ACB=90°,D.E分别是BC、BA的中点,联结DE,F在DE延长线上,且AF=AE.
(1)求证:四边形ACEF是平行四边形;
(2)若四边形ACEF是菱形,求∠B的度数.
(本小题满分8分)
某服装专卖店老板对第一季度男、女服装的销售收入进行统计,并绘制了扇形统计图(如图).由于三月份开展促销活动,男、女服装的销售收入分别比二月份增长了,
,已知第一季度男女服装的销售总收入为20万元.
(1)一月份销售收入为万元,二月份销售收入为万元,三月份销售收入为万元;
(2)二月份男、女服装的销售收入分别是多少万元?
(本小题满分8分)
如图,一艘轮船以每小时20海里的速度沿正北方向航行,在A处测得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处测得灯塔C在北偏西60°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果保留根号)
(本小题满分8分)
如图,ABCD是正方形,点G是BC上的任意一点,于E,
,交AG于F.
求证:.
(本题共两小题,每小题6分,满分12分)
(1)计算:
(2)解分式方程:
(本小题满分12分)已知:抛物线与x轴交于A、B两点,与y轴交于点C. 其中点A在x轴的负半轴上,点C在y轴的负半轴上,线段OA、OC的长(OA<OC)是方程
的两个根,且抛物线的对称轴是直线
.
(1)求A、B、C三点的坐标;
(2)求此抛物线的解析式;
(3)若点D是线段AB上的一个动点(与点A、B不重合),过点D作DE∥BC交AC于点E,连结CD,设BD的长为m,△CDE的面积为S,求S与m的函数关系式,并写出自变量m的取值范围.S是否存在最大值?若存在,求出最大值并求此时D点坐标;若不存在,请说明理由.