如图①,一次函数的图象与二次函数
的图象相交于A,B两点,点A,B的横坐标分别为m,n(m<0,n>0).
(1)当m=﹣1,n=4时,k= ,b= ;
当m=﹣2,n=3时,k= ,b= ;
(2)根据(1)中的结果,用含m,n的代数式分别表示k与b,并证明你的结论;
(3)利用(2)中的结论,解答下列问题:如图②,直线AB与x轴,y轴分别交于点C,D,点A关于y轴的对称点为点E,连接AO,OE,ED.
①当m=﹣3,n>3时,求的值(用含n的代数式表示);
②当四边形AOED为菱形时,m与n满足的关系式为 ;
当四边形AOED为正方形时,m= ,n= .
如图,已知反比例函数和一次函数y=2x-1,其中一次函数的图象经过(a,b),(a+1,b+k)两点。
(1)求反比例函数的解析式;
(2)如图,已知点A在第一象限,且同时在上述两个函数的图象上, 求点A的坐标;
(3)利用(2)的结果,请问:在x轴上是否存在点P,使△AOP为等腰三角形?若存在,把符合条件的P点坐标都求出来;若不存在,请说明理由。
一个不透明的口袋中有三个小球,上面分别标有数字1,2,3,每个小球,除数字外其他都相同.甲先从袋中随机取出1个小球,记下数字后放回;乙再从袋中随机取出1个小球记下数字.用画树状图或列表的方法,
(1)求取出的两个小球上的数字之和为3的概率;
(2)求取出的两个小球上的数字之和大于4的概率.
已知关于的一元二次方程
(
为常数).求证:方程有两个不相等的实数根.
解下列方程:
(1)2(x+2 )2 -8 = 0
(2)(x+3)2 + 3(x+3)-4 = 0
A、B两站间的路程为448千米,一列慢车从A站出发,每小时行驶60千米;一列快车从B站出发,每小时行驶80千米,问:
(1)两车同时开出,相向而行,出发后多少小时相遇?
(2)两车相向而行,慢车先开出28分钟,快车开出后多少小时两车相遇?