(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线
顶点E在直线l上.
(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;
(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;
(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
(本小题满分12分)将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张三角形胶片△ABC和△DEF.将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.
(1)当△DEF旋转至如图②位置,点B(E),C、D在同一直线上时,∠AFD与∠DCA的数量关系是.
(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.
(3)在图③中,连接BO、AD,探索BO与AD之间有怎样的位置关系,并证明.
(本小题满分10分)如图,在直角坐标系xOy中,直线与双曲线
相交于A(-1,a)、B两点,BC⊥x轴,垂足为C,△BOC的面积是1.
(1)求m、n的值;
(2)求三角形AOC的面积.
(本小题满分10分)如图☉O中,半径OD⊥弦AB于点C,连接AO并延长交☉O于点E,连接EC,若AB=8,CD=2,求EC的长度.
(本小题满分10分)如图所示,一次函数(
)的图象与反比例函数
(
)的图象交于M,N两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象写出使反比例函数的值大于一次函数的值的x的范围.
(本小题满分8分)一个不透明的袋中装有20个只有颜色不同的球,其中5个黄球,8个黑球,7个红球.
求(1)从袋中摸出一个球是黄球的概率;
(2)现从袋中取出若干个黑球,搅匀后,使从袋中摸出一个球是黑球的概率是,求从袋中取出黑球的个数.