(广安)如图,边长为1的正方形ABCD一边AD在x负半轴上,直线l:经过点B(x,1)与x轴,y轴分别交于点H,F,抛物线
顶点E在直线l上.
(1)求A,D两点的坐标及抛物线经过A,D两点时的解析式;
(2)当抛物线的顶点E(m,n)在直线l上运动时,连接EA,ED,试求△EAD的面积S与m之间的函数解析式,并写出m的取值范围;
(3)设抛物线与y轴交于G点,当抛物线顶点E在直线l上运动时,以A,C,E,G为顶点的四边形能否成为平行四边形?若能,求出E点坐标;若不能,请说明理由.
矩形ABCD中,AB="6" cm,BC="12" cm ,点P从A出发,沿AB边以1cm/s的速度向点B匀速移动,同时点Q从点B出发,沿BC边以2cm/s的速度向点C匀速移动,设运动时间为t s.
(1)t为何值时,△DPQ的面积等于28cm2;
(2)若DQ⊥PQ时,求t的值;
如图,Rt△ABC中,∠ACB=90°,D是BC的中点,CE⊥AD,垂足为E.
(1)求证:CD2=DE·AD;
(2)求证:∠BED=∠ABC.
如图,AB是⊙O的切线,切点为B,直线AO交⊙O于点C、D,若∠A=30°.
(1)求∠D的度数;
(2)过C点作⊙O的切线交AB于E,若CE=2,求⊙O的半径.
某篮球队在一次联赛中共进行了10场比赛,已知10场比赛的平均得分为88分,且前9场比赛的得分依次为:97、91、85、91、84、86、85、82、88.
(1)求第10场比赛的得分;
(2)求这10场比赛得分的中位数,众数和方差.
如图△ABC中,DE∥BC,,M为BC上一点,AM交DE于N.
(1)若AE=4,求EC的长;
(2)若M为BC的中点,,求.
.