(广安)如图,一次函数的图象与x轴、y轴分别相交于A、B两点,且与反比例函数(
)的图象在第一象限交于点C,如果点B的坐标为(0,2),OA=OB,B是线段AC的中点.
(1)求点A的坐标及一次函数解析式.
(2)求点C的坐标及反比例函数的解析式.
(1)如图,△ACB和△DCE均为等边三角形,点A、D、E在同一直线上,连接BE.求证:AD=BE.
(2)如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A、D、E在同一直线上,CM为△DCE边DE上的高,连接BE.
①求证:2CM+BE=AE;
②若将图2中的△DCE绕点C旋转至图3所示位置,①中的结论还成立吗?若不成立,写出它们之间的数量关系.
如图,△ABC中,AB=AC=2,∠B=∠C=40°.点D在线段BC上运动(点D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.
(1)当∠BAD=20°时,∠EDC= °;
(2)当DC等于多少时,△ABD≌△DCE,试说明理由;
(3)△ADE能成为等腰三角形吗?若能,请直接写出此时∠BAD的度数;若不能,请说明理由.
如图,在笔直的公路上A、B两点相距25km,C.D为两村庄,DA⊥AB于点A,CB⊥AB于点B,已知DA=15km,CB=10km,现在要在公路的AB段上建—个汽车站E,使得C、D两村到汽车站E的距离相等,则汽车站E应建在离A点多远处?
如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC.
(1)试判定△ODE的形状,并说明你的理由;
(2)线段BD、DE、EC三者之间有什么数量关系?写出你的判断过程.
如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于点F,且BE=CF.
(1)求证:△BDE≌△CDF;
(2)求证:AD平分∠BAC.