(攀枝花)“热爱劳动,勤俭节约”是中华民族的光荣传统,某小学校为了解本校3至6年级的3000名学生帮助父母做家务的情况,以便做好引导和教育工作,随机抽取了200名学生进行调查,按年级人数和做家务程度,分别绘制了条形统计图(图1)和扇形统计图(图2).
(1)四个年级被调查人数的中位数是多少?
(2)如果把“天天做”、“经常做”、“偶尔做”都统计成帮助父母做家务,那么该校3至6年级学生帮助父母做家务的人数大约是多少?
(3)在这次调查中,六年级共有甲、乙、丙、丁四人“天天帮助父母做家务”,现准备从四人中随机抽取两人进行座谈,请用列表法或画树状图的方法求出抽取的两人恰好是甲和乙的概率.
如图,在△ABC中,AD是BC边上的高,tan C=,AC=3,AB=4,求BD的长.(结果保留根号)
如图,直角梯形纸片ABCD中,AD∥BC,∠A=90°,∠C=30°.折叠纸片使BC经过点D,点C落在点E处,BF是折痕,且BF=CF=8.
(1)求∠BDF的度数;
(2)求AB的长.
(1)如图1,在△ABC中,BA=BC,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<
∠ABC),以点B为旋转中心,将△BEC按逆时针旋转,得到△BE′A(点C与点A重合,点E到点E′处)连接DE′.
求证:DE′=DE.
(2)如图2,在△ABC中,BA=BC,∠ABC=90°,D,E是AC边上的两点,且满足∠DBE=∠ABC(0°<∠CBE<∠45°).
求证:DE2=AD2+EC2.
如图①,在△ABC中,AB=AC,∠BAC=90°,D、E分别是AB、AC边的中点,将△ABC绕点A顺时针旋转α角(0°<α<180°),得到△AB′C′(如图②).
(1)探究DB′与EC′的数量关系,并给予证明;
(2)当DB′∥AE时,试求旋转角α的度数.
如图四边形ABCD和四边形OEFG都是正方形,点O是正方形ABCD两对角线的交点,已知AB=2,EF=3,正方形OEFG绕点O转动,OE交BC上一点N,OG交CD上一点M.求四边形OMCN的面积.