(·湖州市 第24题 12分)平面直角坐标系xOy中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90°得到线段BD,抛物线y=ax2+bx+c(a≠0)经过点D.
(1)如图1,若该抛物线经过原点O,且a=.
①求点D的坐标及该抛物线的解析式.
②连结CD,问:在抛物线上是否存在点P,使得∠POB与∠BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.
(2)如图2,若该抛物线y=ax2+bx+c(a≠0)经过点E(1,1),点Q在抛物线上,且满足∠QOB与∠BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围.
如图, 中, ,以 为直径的 交 于点 ,点 为 延长线上一点,且 .
(1)求证: 是 的切线;
(2)若 , ,求 的半径.
已知关于 的一元二次方程 有两个不相等的实数根 , .
(1)求 的取值范围;
(2)若 ,且 为整数,求 的值.
第一盒中有2个白球、1个黄球,第二盒中有1个白球、1个黄球,这些球除颜色外无其他差别.
(1)若从第一盒中随机取出1个球,则取出的球是白球的概率是 .
(2)若分别从每个盒中随机取出1个球,请用列表或画树状图的方法求取出的两个球中恰好1个白球、1个黄球的概率.
如图,拦水坝的横断面为梯形 , ,坝高 ,坡角 , ,求 的长.
先化简,再求值: ,其中 .