如图,在平面直角坐标系中,⊙A与x轴相交于C(﹣2,0),D(﹣8,0)两点,与y轴相切于点B(0,4).
(1)求经过B,C,D三点的抛物线的函数表达式;
(2)设抛物线的顶点为E,求证:直线CE与⊙A相切;
(3)在x轴下方的抛物线上,是否存在一点F,使△BDF面积最大,最大值是多少?并求出点F的坐标.
某商业集团新进了 台空调, 台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中 台给甲连锁店, 台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:
设集团调配给甲连锁店 台空调,集团卖出这 台电器的总利润为 (元)。
(1)写出 关于 的函数解析式,并求出 的取值范围;
(2)为了促销,集团决定仅对甲连锁店的空调每台让利 元销售,其他的销售利润不变,并且让利后每台空调的利润仍然高于甲连锁店销售的每台冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?
有一个附有进、出水管的容器,每单位时间内进、出的水量都是一定的,设从某时开始 钟内只进水不出水,在随后的 内既进水又出水,得到时间 与水量 之间的关系如图所示,若 后只出水不进水,求这时(即 ) 与 之间的函数关系式,并求出多长时间可将容器内的水放完?
如图,表示甲、乙两名选手在一次自行车越野赛中,路程 随时间 变化的图象(全程).根据图象回答下列问题:
(1)比赛开始多少分钟时,两人第一次相遇?
(2)这次比赛全程是多少千米?
(3)比赛开始多少分钟时,两人第二次相遇?
如图所示。设函数 的图象与 轴交于 点,函数 的图象与 轴交于点 ,两个函数的图象交于点 ,求通过线段 的中点 及 点的一次函数解析式.
在 两个数之间,第一次写上 ,第二次在 之间和 之间分别写上 和 ,如下所示:
第 次操作:
第 次操作:
第 次操作:
第 次操作:…
第 次操作是在上一次操作的基础上,在每两个相邻的数之间写上这两个数的和的 .
(1)请写出第 次操作后所得到的 个数,并求出它们的和;
(2)经过 次操作后所有数的和记为 ,第 次操作后所有数的和记为 ,写出 与 之间的关系式;
(3)求 的值.