游客
题文

如图,一条河的两岸l1,l2互相平行,在一次综合实践活动中,小颖去测量这条河的宽度,先在对岸l1上选取一个点A,然后在河岸l2时选择点B,使得AB与河岸垂直,接着沿河岸l2走到点C处,测得BC=60米,∠BCA=62°,请你帮小颖算出河宽AB(结果精确到1米).(参考数据:sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行了一次测试(满分50分,成绩均记为整数分),并按测试成绩 m (单位:分)分成四类: A ( 45 < m 50 ) B ( 40 < m 45 ) C ( 35 < m 40 ) D ( m 35 ) 绘制出如图所示的两幅不完整的统计图,请根据图中信息解答下列问题:

(1)求本次抽取的样本容量和扇形统计图中 A 类所对的圆心角的度数;

(2)若该校九年级男生有500名, D 类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?

如图,已知抛物线 y = a x 2 + bx 3 x 轴交于点 A ( 3 , 0 ) 和点 B ( 1 , 0 ) ,交 y 轴于点 C ,过点 C CD / / x 轴,交抛物线于点 D

(1)求抛物线的解析式;

(2)若直线 y = m ( 3 < m < 0 ) 与线段 AD BD 分别交于 G H 两点,过 G 点作 EG x 轴于点 E ,过点 H HF x 轴于点 F ,求矩形 GEFH 的最大面积;

(3)若直线 y = kx + 1 将四边形 ABCD 分成左、右两个部分,面积分别为 S 1 S 2 ,且 S 1 : S 2 = 4 : 5 ,求 k 的值.

对于三个数 a b c ,用 M { a b c } 表示这三个数的中位数,用 max { a b c } 表示这三个数中最大数,例如: M { 2 1 0 } = 1 max { 2 1 0 } = 0 max { 2 1 a } = a ( a 1 ) 1 ( a < 1 )

解决问题:

(1)填空: M { sin 45 ° cos 60 ° tan 60 ° } =   ,如果 max { 3 5 3 x 2 x 6 } = 3 ,则 x 的取值范围为  

(2)如果 2 · M { 2 x + 2 x + 4 } = max { 2 x + 2 x + 4 } ,求 x 的值;

(3)如果 M { 9 x 2 3 x 2 } = max { 9 x 2 3 x 2 } ,求 x 的值.

如图,以 Rt Δ ABC 的直角边 AB 为直径作 O 交斜边 AC 于点 D ,过圆心 O OE / / AC ,交 BC 于点 E ,连接 DE

(1)判断 DE O 的位置关系并说明理由;

(2)求证: 2 D E 2 = CD · OE

(3)若 tan C = 4 3 DE = 5 2 ,求 AD 的长.

某商场计划购进 A B 两种型号的手机,已知每部 A 型号手机的进价比每部 B 型号手机进价多500元,每部 A 型号手机的售价是2500元,每部 B 型号手机的售价是2100元.商场用50000元共购进 A 型号手机10部, B 型号手机20部.

(1)求 A B 两种型号的手机每部进价各是多少元?

(2)为了满足市场需求,商场决定用不超过7.5万元采购 A B 两种型号的手机共40部,且 A 型号手机的数量不少于 B 型号手机数量的2倍.

①该商场有哪几种进货方式?

②该商场选择哪种进货方式,获得的利润最大?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号