某动车站在原有的普通售票窗口外新增了无人售票窗口,普通售票窗口从上午8点开放,而无人售票窗口从上午7点开放,某日从上午7点到10点,每个普通售票窗口售出的车票数(张)与售票时间x(小时)的变化趋势如图1,每个无人售票窗口售出的车票数
(张)与售票时间x(小时)的变化趋势是以原点为顶点的抛物线的一部分,如图2,若该日截至上午9点,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同.
(1)求图2中所确定抛物线的解析式;
(2)若该日共开放5个无人售票窗口,截至上午10点,两种窗口共售出的车票数不少于900张,则至少需要开放多少个普通售票窗口?
如图,在直角梯形ABCD中,AB∥DC,AB⊥BC,∠A=60°,AB=2CD,E、F分别为AB、AD的中点,联结EF、EC、BF、CF.四边形AECD的形状是;
若CD=2,求CF的长.
小明从地出发向
地行走,同时晓阳从
地出发向
地行走,如图所示,相交于点M的两条线段
分别表示小明、晓阳离A地的距离
(千米)与已用时间
(分钟)之间的关系,
小明与晓阳相遇时,晓阳出发的时间是;
求小明与晓阳的速度。
已知一次函数的图像经过点A(1,0)和B
(
),且点B在反比例函数
的图像上.
求一次函数的解析式;
若点M是
轴上一点,且满足△ABM是直角三角形,请直接写出点M的坐标.
如图,∠ACB=∠CDE=90°,B是CE的中点,∠DCE=30°,AC=CD.求证:AB∥DE.
在一个三角形中,如果一个角是另一个角的2倍,我们称这种三角形为倍角三角形.如图28-1,倍角△ABC中,∠A=2∠B,∠A、∠B、∠C的对边分别记为a,b,c,倍角三角形的三边a,b,c有什么关系呢?让我们一起来探索.我们先从特殊的倍角三角形入手研究.请你结合图形填空:
如图28-4,对于一般的倍角△ABC,若∠CAB=2∠CBA ,∠CAB、∠CBA、∠C的对边分别记为a、b、c,a、b、c三边有什么关系呢?请你作出猜测,并结合图28-4给出的辅助线提示加以证明.