定义:长宽比为:1(n为正基数)的矩形称为株为
矩形.下面,我们通过折叠的方式折出一个
矩形.如图①所示.
操作1:将正方形ABCD沿过点B的直线折叠,使折叠后的点C落在对角线BD上的点G处,折痕为BH
操作2:将AD沿过点G的直线折叠,使点A,点D分别落在边AB,CD上,折痕为EF
则四边形BCEF为矩形
证明:设正方形ABCD的边长为1,则BD==
.
由折叠性质可知BG=BC=1,,则四边形BCEF为矩形
阅读以上内容,回答下列问题:
在图中,所有与CH相等的线段是 ,tan
的值是
已知四边形BCEF为矩形,模仿上述操作,得到四边形BCMN,如图
。
求证:四边形BCMN是矩形
将图中的
矩形BCMN沿用(2)中的操作3次后,得到一个“
矩形”,则n的值是
如图,线段AC和BD相交于O,且都被点O平分,你能得到AB∥CD吗?
请说明理由.
解方程组
如图,在Rt△ABC中,∠C=90°,AC=4㎝,BC=5㎝,D是BC边上一点,CD=3㎝,点P为边AC上一动点(点P与A、C不重合),过点P作PE// BC,交AD于点E.点P以1㎝/s的速度从A到C匀速运动。设点P的运动时间为t(s),DE的长为y(cm),求y关于t的函数关系式,并写出
的取值范围;
当t为何值时,以PE为半径的⊙E与以DB为半径的⊙D外切?并求此时∠DPE的正切值;
将△ABD沿直线AD翻折,得到△AB’D,连接B’ C.如果∠ACE=∠BCB’,求t的值.
如图1,已知正方形OABC的边长为2,顶点A、C分别在x、y轴的正半轴上,M是BC的中点.P(0,m)是线段OC上一个动点(点C除外),直线PM交AB的延长线于点D.求点D的坐标(用含m的代数式表示);
当△ADP是等腰三角形时,求m的值;
设过点P、M、B的抛物线与x轴的正半轴交于点E,过点O作直线ME的垂线,垂足为H(如图2).当点P从原点O向点C运动时,点H也随之运动.请直接写出点H所经过的路径长(不写解答过程).
如图,AE是⊙O的切线,切点为A,BC∥AE,BD平分∠ABC交AE于点D,交AC于点F求证:AC=AD;
若BC=
,FC=
,求AB长.