游客
题文

(桂林)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)直接写出抛物线的解析式:                         
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

如图,在平面直角坐标系中,二次函数 y = x 2 + 6 x 5 的图象与 x 轴交于 A B 两点,与 y 轴交于点 C ,其顶点为 P ,连接 PA AC CP ,过点 C y 轴的垂线 l

(1)求点 P C 的坐标;

(2)直线 l 上是否存在点 Q ,使 ΔPBQ 的面积等于 ΔPAC 的面积的2倍?若存在,求出点 Q 的坐标;若不存在,请说明理由.

如图,1号楼在2号楼的南侧,两楼高度均为 90 m ,楼间距为 AB .冬至日正午,太阳光线与水平面所成的角为 32 . 3 ° ,1号楼在2号楼墙面上的影高为 CA ;春分日正午,太阳光线与水平面所成的角为 55 . 7 ° ,1号楼在2号楼墙面上的影高为 DA .已知 CD = 42 m

(1)求楼间距 AB

(2)若2号楼共30层,层高均为 3 m ,则点 C 位于第几层?(参考数据: sin 32 . 3 ° 0 . 53 cos 32 . 3 ° 0 . 85 tan 32 . 3 ° 0 . 63 sin 55 . 7 ° 0 . 83 cos 55 . 7 ° 0 . 56 tan 55 . 7 ° 1 . 47 )

如图, AB O 的直径,点 C O 外, ABC 的平分线与 O 交于点 D C = 90 °

(1) CD O 有怎样的位置关系?请说明理由;

(2)若 CDB = 60 ° AB = 6 ,求 AD ̂ 的长.

徐州至北京的高铁里程约为 700 km ,甲、乙两人从徐州出发,分别乘坐“徐州号”高铁 A 与“复兴号”高铁 B 前往北京.已知 A 车的平均速度比 B 车的平均速度慢 80 km / h A 车的行驶时间比 B 车的行驶时间多 40 % ,两车的行驶时间分别为多少?

如图,在矩形 ABCD 中, AD = 4 ,点 E 在边 AD 上,连接 CE ,以 CE 为边向右上方作正方形 CEFG ,作 FH AD ,垂足为 H ,连接 AF

(1)求证: FH = ED

(2)当 AE 为何值时, ΔAEF 的面积最大?

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号