(河池)如图1,抛物线与x轴交于A,B,与y轴交于C,抛物线的顶点为D,直线l过C交x轴于E(4,0).
(1)写出D的坐标和直线l的解析式;
(2)P(x,y)是线段BD上的动点(不与B,D重合),PF⊥x轴于F,设四边形OFPC的面积为S,求S与x之间的函数关系式,并求S的最大值;
(3)点Q在x轴的正半轴上运动,过Q作y轴的平行线,交直线l于M,交抛物线于N,连接CN,将△CMN沿CN翻转,M的对应点为M′.在图2中探究:是否存在点Q,使得M′恰好落在y轴上?若存在,请求出Q的坐标;若不存在,请说明理由.
某中学组织一批学生春游,原计划租用45座客车若干辆,但有15人没有座位;若租用同样数量的60座客车,则多出一辆车,且其余客车恰好坐满,已知45座客车租金每辆220元,60座客车租金为每辆300元,试问:
(1)这批学生人数是多少?原计划租用45座客车多少辆?
(2)若租用同一种车,要使每位学生都有座位,怎样租用更合算?
某体育用品商场预测某品牌运动服能够畅销,就用33000元购进了一批这种运动服,上市后很快脱销,商场又用68000元购进第二批这种运动服,所购数量是第一批购进数量的2倍,但每套进价多了10元.该商场两次共购进这种运动服多少套?
如图所示,OE是∠AOB的平分线,OD是∠BOC的平分线,∠AOB=100°,∠EOD=80°,求∠BOC的度数.
请用圆规和直尺作一个已知角的平分线,保留作图痕迹,并写出作法.
已知:∠AOB
求作:∠AOB的平分线
作法:
如图所示,AB=16cm,
(1)若C1是AB的中点,求AC1的长度
(2)若C2是A C1的中点,求AC2的长度
(3)若C3是A C2的中点,求AC3的长度
(4)若照上述规律发展下去,则ACn的长度是多少呢?