游客
题文

(桂林)如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.
(1)直接写出抛物线的解析式:                         
(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?
(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量(件)与销售单价(元)符合一次函数,且时,时,
(1)求一次函数的表达式;
(2)若该商场获得利润为元,试写出利润与销售单价之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
(3)若该商场获得利润不低于500元,试确定销售单价的范围.

阅读下列材料并填空。平面上有n个点(n≥2)且任意三个点不在同一条直线上,过这些点作直线,一共能作出多少条不同的直线?
(1)分析:当仅有两个点时,可连成1条直线;当有3个点时,可连成3条直线;当有4个点时,可连成6条直线;当有5个点时,可连成10条直线……
(2)归纳:考察点的个数和可连成直线的条数发现:如下表

点的个数
可作出直线条数
2
1=
3
3=
4
6=
5
10=
……
……
n

(3)推理:平面上有n个点,两点确定一条直线。取第一个点A有n种取法,取第二个点B有(n-1)种取法,所以一共可连成n(n-1)条直线,但AB与BA是同一条直线,故应除以2;即
(4)结论:
试探究以下几个问题:平面上有n个点(n≥3),任意三个点不在同一条直线上,过任意三个点作三角形,一共能作出多少不同的三角形?
(1)分析:
当仅有3个点时,可作出个三角形;
当仅有4个点时,可作出个三角形;
当仅有5个点时,可作出个三角形;
……
(2)归纳:考察点的个数n和可作出的三角形的个数,发现:(填下表)

点的个数
可连成三角形个数
3

4

5

……

n

(3)推理:(4)结论:

Rt△ABC与Rt△FED是两块全等的含30o、60o角的三角板,按如图(一)所示拼在一起,CBDE重合.
(1)求证:四边形ABFC为平行四边形;
(2)取BC中点O,将△ABC绕点O顺时钟方向旋转到如图(二)中△位置,直线ABCF分别相交于PQ两点,猜想OQOP长度的大小关系,并证明你的猜想.
(3)在(2)的条件下,指出当旋转角至少为多少度时,四边形PCQB为菱形(不要求证明).

已知关于的一元二次方程的两个不相等的实数根满足,求的值。

如图,线段分别表示甲、乙两建筑物的高,,从点测得点的仰角为60°从点测得点的仰角为30°,已知甲建筑物高米.

(1)求乙建筑物的高
(2)求甲、乙两建筑物之间的距离(结果精确到0.01米).
(参考数据:

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号