如图所示,在长30m,宽20m的花园,要求在花园中修两条纵向平行和一条横向弯折的小道,剩余的地方种植花草.要使种植花草的面积为532m2,那么小道进出口的宽度应为多少m?(注:所有小道进出口的宽度相等,且每段小道均为平行四边形)
(本小题10分)
如图①,将两个完全相同的三角形纸片和
重合放置,其中
90°,
30°,
.
(1)操作发现
如图②,固定△,将△
绕点
旋转,当点
恰好落在
边上时,m]
①=°,旋转角α=°(0<α<90),线段
与
的位置关系是;
②设△的面积为
,△
的面积为
,则
与
的数量关系是;
(2)猜想论证
当△绕点
旋转到图③所示的位置时,小明猜想(Ⅰ)中
与
的数量关系仍然成立,并尝试分别作出了△
和△
中
,
边上的高
,
,请你证明小明的猜想;
(3)拓展探究
如图④,60°,
平分
,
,
∥
交
于点
.若在射线
上存在点
,使
,请直接写出相应的
的长.
(本小题10分)如图,利用一面墙(墙的长度不限),另三边用20m长的篱笆围成一个面积为50m2的矩形场地,求矩形的长和宽各是多少.
(本小题10分)如图,两座建筑物的水平距离为30m,从
点测得
点的俯角
为35°,测得
点的俯角
为43°,求这两座建筑物的高度(结果保留小数点后1 位,参考数据
,
,
,
,
,
).
(本小题10分)已知AB,BC,CD分别与⊙相切于E,F,G三点,且AB∥CD,连接OB,OC.
(1)如图①,求∠BOC的度数;
(2)如图②,延长CO交⊙O于点M,过点M做MN∥OB交CD于点N,当OB=6,OC=8时,求⊙的半径及MN的长.
(本小题8分)已知抛物线y=+bx+c过点(0,0),(1,3),求抛物线的解析式,并求出抛物线的顶点坐标.