游客
题文

(1)如图1,平面内有一等腰直角三角板ABC(∠ACB=90°)和一直线MN.过点C作CE⊥MN于点E,过点B作BF⊥MN于点F,试证明线段AF,BF,CE之间的数量关系为AF+BF=2CE.(提示:过点C做BF的垂线,利用三角形全等证明.)
(2)若三角板绕点A顺时针旋转至图2的位置,其他条件不变,试猜想线段AF、BF、CE之间的数量关系,并证明你的猜想.
(3)若三角板绕点A顺时针旋转至图3的位置,其他条件不变,则线段AF、BF、CE之间的数量关系为                 

科目 数学   题型 填空题   难度 中等
知识点: 对称式和轮换对称式
登录免费查看答案和解析
相关试题

化简的结果是  

布袋中装有3个红球和6个白球,它们除颜色外其他都相同,如果从布袋里随机摸出一个球,那么所摸到的球恰好为红球的概率是  

如图,AC、BD相交于点O,∠A=∠D,请补充一个条件,使△AOB≌△DOC,你补充的条件是  (填出一个即可).

使二次根式有意义的x的取值范围是  

﹣2014的相反数  

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号