(本题8分)“双十一”期间,小王去水果批发市场采购苹果,他看中了A、B两家苹果.这两家苹果品质一样,零售价都为6元/千克,批发价各不相同.
A家规定:批发数量不超过1000千克,按零售价的92%优惠;批发数量不超过2000千克,按零售价的90%优惠;超过2000千克的按零售价的88%优惠.
B家的批发价格采用分段计算方法,规定如下表:
数量范围 (千克) |
不超过500 |
超过500但不超过1500部分 |
超过1500但不超过2500部分 |
超过2500部分 |
价格 (元) |
零售价的95% |
零售价的85% |
零售价的75% |
零售价的70% |
B家示例:小王批发苹果2100千克,总费用为(6×95%×500+6×85%×1000+6×75%×600)元.
(1)如果他批发800千克苹果,则他在A 家批发需要 元,在B家批发需要 元;
(2)如果他批发x千克苹果(1500<x≤2000),则他在A 家批发需要 元,在B家批发需要 元(用含x的代数式表示);
(3)现在他要批发2000千克苹果,你能帮助他选择在哪家批发更优惠吗?请说明理由.
如图,已知△ABC中,∠B=∠C,AB=AC=12cm,BC=8cm,点D为AB的中点.如果点P在线段BC上以2cm/s的速度由B点向C点运动,同时,点Q在线段CA上由点C向A点运动.
(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由.
(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
如图,在等腰Rt△ABC中,∠ACB=90°,AC=CB,F是AB边上的中点,点D、E分别在边AC、BC边上,且AD=CE.连接DE、DF、EF.
(1)求证:△ADF≌△CEF
(2)试判断△DFE的形状,并说明理由.
已知:如图,AB=AD,∠D=∠B,∠1=∠2,求证:(1)△ADE≌△ABC;(2)∠DEB=∠2.
如图,AB=EF,BC⊥AE于C,FD⊥AE于D,CE=DA.
求证:(1)△ABC≌△EFD;
(2)AB//EF.
如图,CD平分△ABC的外角∠BCE,且CD//AB,求证:AC=BC