如图1所示的坐标系内,在x0(x0>0)处有一垂直工轴放置的挡板.在y轴与挡板之间的区域内存在一个与xoy平珏垂直且指向纸内的匀强磁场,磁感应强度B=0.2T.位于坐标原点O处的粒子源向xoy平面内发射出大量同种带正电的粒子,所有粒子的初速度大小均为vo=1.0×106m/s,方向与x轴正方向的夹角为θ,且0≤θ≤90°.该粒子的比荷为=1.0×108C/kg,不计粒子所受重力和粒子间的相互作用,粒子打到挡板上后均被挡板吸收.
(1)求粒子在磁场中运动的轨道半径R:
(2)如图2所示,为使沿初速度方向与x轴正方向的夹角θ=30°射出的粒子不打到挡板上,则x0必须满足什么条件?该粒子在磁场中运动的时间是多少?
(3)若x0=5.0×10﹣2m,求粒子打在挡板上的范围(用y坐标表示),并用“”图样在图3中画出粒子在磁场中所能到达的区域:
如图所示,在xoy平面内,y轴左侧有一个方向竖直向下,水平宽度为m,电场强度E=1.0×104N/C的匀强电场.在y轴右侧有一个圆心位于x轴上,半径r=0.01m的圆形磁场区域,磁场方向垂直纸面向里,磁感应强度B=0.01T,坐标为x0=0.04m处有一垂直于x轴的面积足够大的竖直荧光屏PQ.今有一束带正电的粒子从电场左侧沿+x方向射入电场,穿过电场时恰好通过坐标原点,速度大小
,方向与x轴成30°角斜向下.若粒子的质量
,电量
,粒子的重力不计。试求:
(1)粒子射入电场时位置的纵坐标和初速度大小;
(2)粒子在圆形磁场中运动的最长时间;
(3)若圆形磁场可沿x轴移动,圆心O′在x轴上的移动范围为,由于磁场位置的不同,导致该粒子打在荧光屏上的位置也不同,试求粒子打在荧光屏上的范围。
某兴趣小组对一辆自制遥控小车的性能进行研究,他们让这辆小车在水平的直轨道上由静止开始运动,并将小车运动的全过程记录下来,通过处理转化为v—t图象,如图所示(除2s~10s时间段图象为曲线外,其余时间段图象均为直线)。已知在小车运动的过程中,2s~14s时间段内小车的功率保持不变,在14s末停止遥控而让小车自由滑行,小车的质量为1.0kg,可认为在整个运动过程中小车所受到的阻力大小不变。求:
(1)小车所受到的阻力;
(2)小车匀速行驶阶段的功率;
(3)小车在加速运动过程中(指图象中0~10秒内)位移的大小。
如图所示,一个矩形线圈的ab、cd边长为L1,ad、bc边长为L2,线圈的匝数为N,线圈处于磁感应强度为B的匀强磁场中,并以OO/为中轴做匀速圆周运动,(OO/与磁场方向垂直,线圈电阻不计),线圈转动的角速度为ω,设转动从中性面开始计时,请回答下列问题:
(1)请用法拉第电磁感应定律证明该线圈产生的是正弦交流电。
(2)将线圈产生的交流电通入电阻为R的电动机时,形成的电流有效值为I,请计算该电动机的输出的机械功率(其它损耗不计)。
(3)用此电动机将竖直固定的光滑U型金属框架上的水平导体棒EF从静止向上拉,已知导体棒的质量为m,U型金属框架宽为L且足够长,内有垂直向里的匀强磁场,磁感应强度为B0,导体棒上升高度为h时,经历的时间为t,且此时导体棒刚开始匀速上升,棒有效电阻为R0,金属框架的总电阻不计,棒与金属框架接触良好,请计算:
①导体棒匀速上升时的速度和已知量的关系。
②若t时刻导体棒的速度为v0,求t时间内导体棒与金属框架产生的焦耳热。
如图所示,P1P2为一水平面,其上方紧贴放置一对竖直正对的带电金属板M、N,其下方紧贴放置一内壁光滑的半圆形绝缘轨道ADC,绝缘轨道ADC位于竖直平面内,右端A恰在两板的正中央处,N板上开有小孔B,孔B到水平面P1P2的距离为绝缘轨道直径的2/3倍。设仅在M、N两板之间存在匀强电场。现在左端C的正上方某一位置,将一质量为m、电荷量为q的小球由静止释放,经过绝缘轨道CDA后从A端竖直向上射入两板间,小球能从B孔水平射出,并恰好落到C端。整个过程中,小球的电荷量不变,孔B的大小及小球直径均可忽略,重力加速度为g。求:
(1)板间电场强度E;
(2)小球运动到绝缘轨道的最低点D时对轨道的压力大小。
太空中的射线暴是从很远的星球发射出来的,当
射线暴发生时,数秒内释放的能量大致相当于当前太阳质量全部发生亏损所释放的能量。已知太阳光从太阳到地球需要时间为
,地球绕太阳公转的周期为
,真空中的光速为
,万有引力常量为
。
(1)根据以上给出的物理量写出太阳质量M的表达式。
(2)推算一次射线暴发生时所释放的能(两问都要求用题中给出的物理量表示)。