选修4—4:坐标系与参数方程
已知曲线的极坐标方程式
,以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
,(
为参数).
(1)求曲线的直角坐标方程和直线
的普通方程;
(2)设点,若直线
与曲线
交于两点
,且
,求实数
的值.
在△ABC中,角A、B、C对应的边分别是a、b、c.已知cos2A-3cos(B+C)=1.
(1)求角A的大小;
(2)若△ABC的面积S=5,b=5,求sinBsinC的值.
在△ABC中,a、b、c分别是角A、B、C的对边,△ABC的周长为+2,且sinA+sinB=
sinC.
(1)求边c的长;
(2)若△ABC的面积为sinC,求角C的度数.
在锐角△ABC中,角A、B、C所对的边长分别为a、b、c.向量m=(1,cosB),n=(sinB,-),且m⊥n.
(1)求角B的大小;
(2)若△ABC面积为10,b=7,求此三角形周长.
若sinα=,sinβ=
,且α、β均为锐角,求α+β的值.
已知△ABC的角A、B、C所对的边分别是a、b、c,设向量m=(a,b),n=(sinB,sinA),p=(b-2,a-2).
(1)若m∥n,求证:△ABC为等腰三角形;
(2)若m⊥p,边长c=2,角C=,求△ABC的面积.