如图1,小明将量角器和一块含30°角的直角三角板ABC紧靠着放在同一平面内,使直角边BC与量角器的0°线CD在同一直线上(即点B、C、O、D在同一直线上),O为量角器圆弧所在圆的圆心,∠ACB=90°,∠CAB=30°, BC=6cm.
(1)判断AC是不是⊙O的切线,并说明理由.
(2)将直角三角板ABC沿CD方向平移,使点C落在点O上.此时点B落在点C原位置上(如图2),AB交⊙O于点E,则弧BE的长是多少?
如图,函数的图象与函数
(
)的图象交于A(a,1)、B(1,b)两点.
(1)求k的值;
(2)设y1=-x+4,,利用图象分别写出x>1时y1和y2的取值范围,以及y1与y2的大小关系.
如图,AC是正方形ABCD的对角线,AE平分∠BAC,EF⊥AC交AC于点F.
(1)观察图形,写出图中与BE相等的线段.
(2)选择图中与BE相等的任意一条线段,并加以证明.
(1)计算:;
(2)化简:.
如图(1),在平面直角坐标系中,抛物线
与
轴交于
,与y轴交于
,顶点为
,对称轴为
.
(1)抛物线的解析式是;
(2)如图(2),点是
上的一个动点,
是
关于
的对称点,连结
,过
作
∥
交
轴于
.设
,求
关于
的函数关系式,并求
的最大值;
(3)在(1)中的抛物线上是否存在点,使
成为以
为直角边的直角三角形?若存在,求出
的坐标;若不存在,请说明理由.