如图,方格纸中的每个小方格都是边长为1的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,A(-1,5),B(-1,0),C(-4,3).
(1)画出△ABC关于y轴对称的△A1B1C1;(其中A1、B1、C1是A、B、C的对应点,不写画法)
(2)写出A1、B1、C1的坐标;
(3)求出△A1B1C1的面积.
某学校为满足学生多样化学习需求,准备组建美术、劳动、科普、阅读四类社团.学校为了解学生的参与度,随机抽取了部分学生进行调查,将调查结果绘制成如图所示的不完整的统计图.请根据图中的信息,解答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)若全校共有学生 人,求愿意参加劳动类社团的学生人数;
(3)甲、乙两名同学决定在阅读、美术、劳动社团中选择参加一种社团,请用树状图或列表法表示出所有等可能结果,并求出恰好选中同一社团的概率.
先化简,再求值. ,其中 .
如图,平行四边形ABCD中, , 动点E、F同时从A点出发,点E沿着A→D→B的路线匀速运动,点F沿着A→B→D的路线匀速运动,当点E,F相遇时停止运动.
(1)如图1,设点E的速度为1个单位每秒,点F的速度为4个单位每秒,当运动时间为 秒时,设CE与DF交于点P,求线段EP与CP长度的比值;
(2)如图2,设点E的速度为1个单位每秒,点F的速度为 个单位每秒,运动时间为x秒,△AEF的面积为y,求y关于x的函数解析式,并指出当x为何值时,y的值最大,最大值为多少?
(3)如图3,H在线段AB上且 ,M为DF的中点,当点E、F分别在线段AD、AB上运动时,探究点E、F在什么位置能使 ,并说明理由.
如图,抛物线 交x轴于 ,B两点,交y轴于点 ,顶点D的横坐标为 .
(1)求抛物线的解析式;
(2)在y轴的负半轴上是否存在点P使 ,若存在,求出点P的坐标,若不存在,请说明理由;
(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作 ,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.
如图,AB为 的直径,C为圆上的一点,D为劣弧 的中点,过点D作 的切线与AC的延长线交于点P,与AB的延长线交于点F,AD与BC交于点E.
(1)求证: ;
(2)若⊙O的半径为 , ,求AE的长度;
(3)在(2)的条件下,求△DCP的面积.