已知椭圆上任意一点到两焦点
距离之和为
,离心率为
.
(1)求椭圆的标准方程;
(2)若直线的斜率为
,直线
与椭圆C交于
两点.点
为椭圆上一点,求
的面积的最大值.
(本小题满分14分)
已知函数,
.
(Ⅰ)若函数在
处取得极值,试求
的值,并求
在点
处的切线方程;
(Ⅱ)设,若函数
在
上存在单调递增区间,求
的取值范围.
(本小题满分13分)
如图,在三棱柱中,每个侧面均为正方形,
为底边
的中点,
为侧棱
的中点,
与
的交点为
.
(Ⅰ)求证:∥平面
;
(Ⅱ)求证:平面
.
(本小题满分13分)
袋子中装有编号为a,b的2个黑球和编号为c,d,e的3个红球,从中任意摸出2个球.
(Ⅰ)写出所有不同的结果;
(Ⅱ)求恰好摸出1个黑球和1个红球的概率;
(Ⅲ) 求至少摸出1个黑球的概率.
(本小题满分13分)
在中,角
,
,
所对的边分别为
,
,
,且
,
.
(Ⅰ)求,
的值;
(Ⅱ)若,求
,
的值.
(本小题共13分)
已知数列的前
项和为
,且满足
,
.
(Ⅰ)求证:{}是等差数列;
(Ⅱ)求数列的通项公式;
(Ⅲ)若,求证:
.