如图,直线y=kx-2与x轴交于点B,直线y=x+1与y轴交于点C,这两条直线交于点A(2,a).
(1)直接写出a的值;
(2)求点B,C的坐标及直线AB的表达式;
(3)求四边形ABOC的面积.
(本题4分)先化简,再求值:(3+4x)(3-4x)+(3-4x)2,其中x=
因式分解(每小题3分,共6分)
(1)4a2-16
(2)
如图,在平面直角坐标系中,直线分别交
轴,
轴于A,B两点,点C为OB的中点,点D在第二象限,且四边形AOCD为矩形.
(1)直接写出点A,B的坐标,并求直线AB与CD交点E的坐标;
(2)动点P从点C出发,沿线段CD以每秒1个单位长度的速度向终点D运动;同时,动点N从点A出发,沿线段AO以每秒1个单位长度的速度向终点O运动,过点P作,垂足为H,连接NP.设点P的运动时间为t秒.
① 若△NPH的面积为1,求t的值;
② 点Q是点B关于点A的对称点,问是否有最小值,如果有,求出相应的点P的坐标;如果没有,请说明理由.
(本题8分)已知:如图,在菱形ABCD中,对角线AC、BD相交于点O,DE∥AC,AE∥BD.
(1)求证:四边形AODE是矩形;
(2)若AB=6,∠BCD=120°,求四边形AODE的面积.
(本题8分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF∥CE.
(1)说明四边形ACEF是平行四边形;
(2)当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.