如图所示,在倾角α=60°的斜面上,放一质量为10kg的物体,用k=100N/m的轻质弹簧平行与斜面拉着,物体放在PQ之间任何位置都能处于静止状态,而超过这一范围,物体就会沿斜面滑动,若AP=22cm,AQ=8cm,试求物体与斜面间的最大静摩擦力的大小?(,
)
如图7—10所示,倾角为30°的直角三角形底边长为2L,底边处在水平位置,斜边为光滑绝缘导轨。现在底边中点O处固定一正电荷Q,让一个质量为m带正电的点电荷q从斜面顶端A沿斜边滑下,(整个运动过程中始终不脱离斜面)已测得它滑到斜边上的垂足D处时速度为v,加速度为a,方向沿斜面向下,试求该质点滑到斜边底端C点时的速度和加速度各为多大?
如图所示,绝缘细线一端固定于O点,另一端连接一带电荷量为q,质量为m的带正电小球,要使带电小球静止时细线与竖直方向成а角,可在空间加一匀强电场则当所加的匀强电场沿着什么方向时可使场强最小?最小的场强多大?这时细线中的张力多大?
扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆,其简化模型如图所示:I、II两处的条形匀强磁场区域的宽度分别为L1、L2,边界竖直,I区域的右边界和II区域的左边界相距L,磁感应强度大小分别为B1、B2,方向相反且垂直纸面。一质量为m、电量为-q、重力不计的粒子,从靠近平行板电容器的负极板处由静止释放,两极板间电压为U,粒子经电场加速后平行纸面射入I区域,射入时的速度方向与水平方向的夹角θ=30°。
(1)当L1=L,B1=B0时,粒子从I区域右边界射出时速度与水平方向的夹角也为30°,求B0及粒子在I区域中运动的时间t1;
(2)若L2=L1=L,B2=B1=B0,求粒子在I区域中的最高点与II区域中的最低点之间的高度差h;
(3)若L2=L1=L,B1=B0,为使粒子能返回I区域,求B2应满足的条件;
(4)若L1≠L2,B1≠B2,且已保证粒子能从II区域的右边界射出,为使粒子从II区域右边界射出时速度与从I区域左边界射入时的方向总相同,求B1、B2、L1、L2之间应满足的关系式。
如图所示,竖直放置的半圆形光滑绝缘轨道半径为R,圆心为O,最高点为D,下端与绝缘水平轨道在B点平滑连接。一质量为m、带电量为+q的小物块置于水平轨道上的A点。已知A、B两点间的距离为L,小物块与水平轨道间的动摩擦因数为μ,重力加速度为g。
(1)若物块能到达的最高点是半圆形轨道上与圆心O等高的C点,则物块在A点水平向左的初速度应为多大?
(2)若整个装置处于方向竖直向上的匀强电场中,物块在A点水平向左的初速度vA=,沿轨道恰好能到达最高点D,并向右飞出,则匀强电场的场强E多大?
(3)若整个装置处于方向水平向左、场强大小E′=的匀强电场中,现将物块从A点由静止释放,
运动过程中始终不脱离轨道,求物块第2n(n=1、2、3……)次经过B点时的速度大小。
篮球比赛时,为了避免对方运动员的拦截,往往采取将篮球与地面发生一次碰撞后传递给队友的方法传球——击地传球。设运动员甲以v0=5m/s 的水平速度将球从离地面高 h1=0.8m处抛出,球与地面碰撞后水平方向的速度变为原来水平速度的4/5,竖直方向离开地面瞬间的速度变为与地面碰前瞬间竖直方向速度的3/4,运动员乙恰好在篮球的速度变为水平时接住篮球。运动员与篮球均可看成质点,篮球与地面发生作用的时间为0.02s,并认为篮球与地面接触时可看成是水平方向的匀变速运动,不计空气阻力,g取10m/s2,求甲抛球的位置与乙接球的位置之间的水平距离。