如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且交⊙O于A、B两点,AB=8cm,则l沿OC所在直线平移后与⊙O相切,则平移的距离是( )
A.1cm B.2cm C.8cm D.2cm或8cm
若点都在反比例函数
的图象上,则()
A.![]() |
B.![]() |
C.![]() |
D.![]() |
有一组数据:3,4,5,6,6,则下列四个结论中正确的是()
A.这组数据的平均数、众数、中位数分别是4.8,6,6 |
B.这组数据的平均数、众数、中位数分别是5,5,5 |
C.这组数据的平均数、众数、中位数分别是4.8,6,5 |
D.这组数据的平均数、众数、中位数分别是5,6,6 |
若m·23=26,则m等于()
A.2 | B.4 | C.6 | D.8 |
如图,抛物线与轴交于
(
,0)、
(
,0)两点,且
,与
轴交于点
,其中
是方程
的两个根。
(1)求抛物线的解析式;(2)点
是线段
上的一个动点,过点
作
∥
,交
于点
,连接
,当
的面积最大时,求点
的坐标;
(3)点在(1)中抛物线上,
点为抛物线上一动点,在
轴上是
否存在点,使以
为顶
点的四边形是平行四边形,如果存在,
求出所有满足条件的点的坐标,
若不存在,请说明理由。
如图,已知Rt△ABC中,∠ABC=90°,以直角边AB为直径作⊙O,交斜边AC于点D,连结BD。
(1)若AD=3,BD=4,求边BC的长;
(2)取BC的中点E,连结DE,求证:ED与⊙O相切。