如图,在8×8网格纸中,每个小正方形的边长都为1.
(1)请在网格纸中建立平面直角坐标系,使点A、C的坐标分别为(-4,4),(-1,3),并写出点B的坐标为 ;
(2)画出△ABC关于y轴的对称图形△A1B1C1,并写出B1点的坐标;
(3)在y轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.
如图:已知正方形ABCD的对角线AC长为20cm,半径为1的⊙O1的圆心O1从A点出发以1cm/s的速度向C运动,半径为1的⊙O2的圆心O2从C点出发以2cm/s的速度向A运动且半径同时也以1cm/s的速度不断增大,两圆同时运动,当其中一个圆的圆心运动到AC的端点时,另一个圆也停止运动.
(1)当O1运动了几秒时,⊙O1与AD相切?
(2)当O2运动了几秒时,⊙O2与CB相切?
(3)当O2运动了几秒时,⊙O1与⊙O2相切?
矩形ABCD中,AD=5,AB=3,将矩形ABCD沿某直线折叠,使点A的对应点A′落在线段BC上,再打开得到折痕EF.
(1)当A′与B重合时(如图1),EF=;当折痕EF过点D时(如图2),求线段EF的长;
(2)观察图3和图4,设BA′=,①当
的取值范围是时,四边形AEA′F是菱形;②在①的条件下,利用图4证明四边形AEA′F是菱形.
已知关于的一元二次方程
有两个实数根
和
.
(1)求实数的取值范围;(2)当
时,求
的值.
如图,将□ABCD的边DC延长到点E,使CE=DC,连接AE,交BC于点F.⑴求证:△ABF≌△ECF
⑵若∠AFC=2∠D,连接AC、BE.求证:四边形ABEC是矩形.
已知抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.
(1)求抛物线的解析式和对称轴;
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为时,求直线AN的解析式.