已知:关于x的方程
(1)当m取什么值时,原方程没有实数根;
(2)对m选取一个你喜欢的非零整数,使原方程有两个实数根,并求这两个实数根的平方和.
是两块完全重合的等边三角形纸片(如图①所示),O是AC(或EF)的中点,
不动,将
绕O点顺时针转
.
(1)试分别说明是多少度时,点F在
外部、BC上、内部(不证明)?
(2)当点F不在BC上时,在图②、图③两种情况下(设EF或延长线与BC交于P,EG与CA或延长线交于Q),分别写出OP与OQ的数量关系,并从图②、③中选一种情况给予证明).
小红按某种规律写出4个方程:①;②
;③
;④
.
(1)上述四个方程根的情况如何?为什么?
(2)按此规律,请你写出一个两根都为整数的方程,并解这个方程.
计算:
如图,在平面直角坐标系中,已知矩形ABCD的三个顶点的坐标分别为B(1,0),
C(3,0),D(3,4).以A为顶点的抛物线y=ax2+bx+c过点C.动点P从点A出发,沿线段AB向点B运动,同时动点Q从点C出发,沿线段CD向点D运动.点P,Q的运动速度均为每秒1个单位,运动时间为t秒.过点P作PE⊥AB交AC于点E.
(1)直接写出点A的坐标,并求出抛物线的解析式;
(2)过点E作EF⊥AD于F,交抛物线于点G,当t为何值时,△ACG的面积最大?最大值为多少?
(3)在动点P,Q运动的过程中,当t为何值时,在矩形ABCD内(包括边界)存在点H,使以C,Q,E,H为顶点的四边形为菱形?请直接写出t的值.