已知三角形的三个顶点是
.
(1)求边上的高所在直线的方程;
(2)求边上的中线所在直线的方程
已知数列{}满足
,且
(1)求证:数列{}是等差数列;
(2)求数列{}的通项公式;
(3)设数列{}的前
项之和
,求证:
.
第届亚运会于
年
月
日至
日在中国广州进行,为了做好接待工作,组委会招募了
名男志愿者和
名女志愿者,调查发现,男、女志愿者中分别有
人和
人喜爱运动,其余不喜爱.
(1)根据以上数据完成以下列联表:
喜爱运动 |
不喜爱运动 |
总计 |
|
男 |
10 |
16 |
|
女 |
6 |
14 |
|
总计 |
30 |
(2)能否在犯错误的概率不超过的前提下认为性别与喜爱运动有关?
(3)如果从喜欢运动的女志愿者中(其中恰有人会外语),抽取
名负责翻译工作,则抽出的志愿者中
人都能胜任翻译工作的概率是多少?
附:K2=
P(K2≥k) |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
k |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
已知、
、
为
的三个内角,且其对边分别为
、
、
,若
.
(1)求;
(2)若,求
的面积.
设函数有两个极值点
,且
.
(1)求实数的取值范围;
(2)讨论函数的单调性;
(3)若对任意的,都有
成立,求实数
的取值范围.
已知椭圆:
的离心率为
,过右焦点
且斜率为
的直线交椭圆
于
两点,
为弦
的中点,
为坐标原点.
(1)求直线的斜率
;
(2)求证:对于椭圆上的任意一点
,都存在
,使得
成立.