一跨河桥,桥拱是圆弧形,跨度(AB)为16米,拱高(CD)为4米,求:
(1)桥拱半径.
(2)若大雨过后,桥下河面宽度(EF)为12米,求水面涨高了多少?
计算: .
如图,在平面直角坐标系中,四边形 为正方形,点 , 在 轴上,抛物线 经过点 , 两点,且与直线 交于另一点 .
(1)求抛物线的解析式;
(2) 为抛物线对称轴上一点, 为平面直角坐标系中的一点,是否存在以点 , , , 为顶点的四边形是以 为边的菱形.若存在,请求出点 的坐标;若不存在,请说明理由;
(3) 为 轴上一点,过点 作抛物线对称轴的垂线,垂足为 ,连接 , ,探究 是否存在最小值.若存在,请求出这个最小值及点 的坐标;若不存在,请说明理由.
如图,在 中, , 与 相交于点 ,与 相交于点 ,连接 ,已知 .
(1)求证: 为 的切线;
(2)若 , ,求 的长.
“互联网 ”让我国经济更具活力,直播助销就是运用“互联网 ”的生机勃勃的销售方式,让大山深处的农产品远销全国各地.甲为当地特色花生与茶叶两种产品助销.已知每千克花生的售价比每千克茶叶的售价低40元,销售50千克花生与销售10千克茶叶的总售价相同.
(1)求每千克花生、茶叶的售价;
(2)已知花生的成本为6元 千克,茶叶的成本为36元 千克,甲计划两种产品共助销60千克,总成本不高于1260元,且花生的数量不高于茶叶数量的2倍.则花生、茶叶各销售多少千克可获得最大利润?最大利润是多少?
如图,在平面直角坐标系中, 的斜边 在 轴上,坐标原点是 的中点, , ,双曲线 经过点 .
(1)求 ;
(2)直线 与双曲线 在第四象限交于点 ,求 的面积.