如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系。
小王同学探究此问题的方法是,延长FD到点G,使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由。
解不等式组:并把解集在数轴上表示出来。
如图1,一等腰直角三角尺GEF(∠EGF=90°,∠GEF=∠GFE=45°,GE=GF)的两条直角边与正方形ABCD的两条边分别重合在一起.现正方形ABCD保持不动,将三角尺GEF绕斜边EF的中点O(点O也是BD中点)按顺时针方向旋转.如图2,当EF与AB相交于点M,GF与BD相交于点N时,通过观察或测量BM,FN的长度,猜想BM,FN相等吗?并说明理由;
若三角尺GEF旋转到如图3所示的位置时,线段FE的延长线与AB的延长线相交于点M,线段BD的延长线与GF的延长线相交于点N,此时,(1)中的猜想还成立吗?请说明理由.
如图,在正方形网格上有一个△DEF。作△DEF关于直线HG的轴对称图形△ABC(不写作法);
作EF边上的高(不写作法);
若网格上的最小正方形边长为1,求△DEF的面积.
为了奖励学习进步和成绩优秀的学生,班主任买了同样的笔记本和同种型号的钢笔。其中笔记本和钢笔的数量总共为18,笔记本每本5元,钢笔每只6元。一共花了100元。问买了几本笔记本和几只钢笔。
学了《认识事件的可能性》,林林想到了小时候常玩“石头、剪刀、布”,他想两个人一起玩,有哪些可能情况?请你用列表或画树状图的方式帮他写出来。