在平面直角坐标系中,直线l过点M(3,0),且平行于y轴.
(1)如果△ABC三个顶点的坐标分别是A(-2,0)、B(-1,0)、C(-1,2),△ABC关于y轴的对称图形是△A1B1C1,△A1B1C1关于直线l的对称图形是△A2B2C2,写出△A2B2C2的三个顶点的坐标;
(2)如果点P的坐标是(-a,0),其中a>0,点P关于y轴的对称点是点P1,点P1是关于直线l的对称点是点P2,求P P2的长.
如图,BD是⊙O的直径,A、C是⊙O上的两点,且AB=AC,AD与BC的延长线交于点E.求证:△ABD∽△AEB;
若AD=1,DE=3,求⊙O半径的长.
一量角器所在圆的直径为10厘米,其外缘有A、B两点,其读数、分别为71°和47°.劣弧AB所对圆心角是多少度?
求劣弧AB的长;
问A、B之间的距离是多少?(可用计算器,精确到0.1)
已知双曲线和直线AB的图象交于点A(-3,4),AC⊥x轴于点C.
求双曲线
的解析式;
当直线AB绕着点A转动时,与x轴的交点为B(a,0),并与双曲线
另一支还有一个交点的情形下,求△ABC的面积S与a之间的函数关系式.,并指出a的取值范围.
南昌市某楼盘准备以每平方米6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,房地产开发商为了加快资金周转,对价格经过两次下调后,决定以每平方米4860元的均价开盘销售.求平均每次下调的百分率.
某人准备以开盘价均价购买一套100平方米的住房,开发商给予以下两种优惠方案以供选择:①打9.8折销售;②不打折,一次性送装修费每平方米80元,试问哪种方案更优惠?
.某商场家电销售部有营业员20名,为了调动营业员的积极性,决定实行目标管理,即确定一个月的销售额目标,根据目标完成情况对营业员进行适当的奖惩.为此,商场统计了这20名营业员在某月的销售额,数据如下:(单位:万元)
25 26 21 17 28 26 20 25 26 30
20 21 20 26 30 25 21 19 28 26请根据以上信息完成下表:
销售额(万元) |
17 |
19 |
20 |
21 |
25 |
26 |
28 |
30 |
频数(人数) |
1 |
1 |
3 |
3 |
2 |
2 |
上述数据中,众数是万元,中位数是万元,平均数是万元;
如果将众数作为月销售额目标,能否让至少一半的营业员都能达到目标?请说明理由.