一股民上周末以每股27元价格买了1000股股票,下表为本周内每日股票的涨跌情况(单位:元):
星期 |
一 |
二 |
三 |
四 |
五 |
涨跌(与前一交易日比较) |
+4 |
+4.5 |
-1 |
-2.5 |
-4 |
(1)星期四收盘时,每股多少元?
(2)本周内每股最高价,最低价分别是多少元?
(3)已知该股民买进股票时付了百分之零点一五的手续费,卖出时需付成交额百分之零点一五的手续费和百分之零点一的交易税,如果他一直观望到星期五才将股票全部卖出,请你算算他本周的收益如何.
已知:如图,反比例函数的图象经过点A、B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0).
(1)求该反比例函数的解析式;
(2)求直线BC的解析式.
如图,在△ABC中,DE∥BC,EF∥AB,求证:△ADE∽△EFC.
(本小题满分12分)如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:;
(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
如图,在正方形ABCD中,点P是AB的中点,连接DP,过点B作BE⊥DP交DP的延长线于点E,连接AE,过点A作AF⊥AE交DP于点F,连接BF.
(1)若AE=2,求EF的长;
(2)求证:PF=EP+EB.