图1是一个长为2,宽为2
的长方形,沿图中虚线剪开,可分成四块小长方形.
(1)求出图1的长方形面积;
(2)将四块小长方形拼成一个图2的正方形.利用阴影部分面积的不同表示方法,直接写出代数式()2、(
)2、
之间的等量关系;
(3)把四块小长方形不重叠地放在一个长方形的内部(如图3),未被覆盖的部分用阴影表示.求两块阴影部分的周长和(用含、
的代数式表示).
如图所示,△ABC是等边三角形,延长BC至E,延长BA至F,使AF=BE,连结CF、EF,过点F作直线FD⊥CE于D,试发现∠FCE与∠FEC的数量关系,并说明理由.
如图所示,四边形EFGH是一个矩形的球桌面,有黑白两球分别位于A、B两点,试说明怎样撞击B, 才使白球先撞击台球边EF,反弹后又能击中黑球A?
如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)
如图,已知△ABC中,AH⊥BC于H,∠C=35°,且AB+BH=HC,求∠B度数.
△ABC为正三角形,点M是射线BC上任意一点,点N是射线CA上任意一点,且BM=CN,BN与AM相交于Q点,求∠AQN的度数.