如图所示,真空中有中间开有小孔的两平行金属板竖直放置构成电容器,给电容器充电使其两极板间的电势差,以电容器右板小孔所在位置为坐标原点建立图示直角坐标系xoy。第一象限内有垂直纸面向里的匀强磁场,磁场的上边界MN平行于x轴,现将一质量
、
且重力不计的带电粒子从电容器的左板小孔由静止释放,经电场加速后从右板小孔射出磁场,该粒子能经过磁场中的P点,P点纵坐标为
。若保持电容器的电荷量不变,移动左板使两板间距离变为原来的四分之一,调整磁场上边界MN的位置,粒子仍从左板小孔无初速度释放,还能通过P点,且速度方向沿y轴正向。求磁场的磁感应强度B?
如图所示,在第一象限内有垂直纸面向里的匀强磁场,一对正、负离子(质量相同,电荷量相同,重力不计)分别以相同速度沿与x轴成30°角从原点射入磁场,则正、负电子在磁场中运动时间之比为
如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy平面)向外;在第四象限存在匀强电场,方向沿x轴负向。在y轴正半轴上某点以与x轴正向平行、大小为v0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x轴的方向进入电场。不计重力。若该粒子离开电场时速度方向与y轴负方向的夹角为θ,求:
(1)电场强度大小与磁感应强度大小的比值;
(2)该粒子在电场中运动的时间。
如图所示,充电后的平行板电容器水平放置,电容为C,极板间距离为d,上极板正中有一小孔。质量为m、电荷量为+q的小球从小孔正上方高h处由静止开始下落,穿过小孔到达下极板处速度恰为零(空气阻力忽略不计,极板间电场可视为匀强电场,重力加速度为g)。求:
(1)小球到达小孔处的速度;
(2)极板间电场强度大小和电容器所带电荷量;
如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板下方有一磁感应强度为B的匀强磁场。带电量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,并进入磁场做匀速圆周运动。忽略重力的影响,求:
(1)粒子从电场射出时速度ν的大小;
(2)粒子在磁场中做匀速圆周运动的半径R。
如图所示,AB是位于竖直平面内、半径R=0.5 m的圆弧形的光滑绝缘轨道,其下端点B与水平绝缘轨道平滑连接,整个轨道处在水平向左的匀强电场中,电场强度E=5×103 N/C.今有一质量为m=0.1 kg、带电荷量q=+8×10-5C的小滑块(可视为质点)从A点由静止释放.若已知滑块与水平轨道间的动摩擦因数μ=0.05,取g=10 m/s2,求:
(1) 小滑块第一次经过圆弧形轨道最低点B时对B点的压力;
(2) 小滑块运动到右侧最远处到最低点B的距离;
(3) 小滑块在水平轨道上通过的总路程。