如图,直线与椭圆
交于
两点,记
的面积为
,
是坐标原点.
(1)当时,求
的最大值;
(2)当时,求直线
的方程.
如图所示,已知正方形ABCD和矩形ACEF所在的平面互相垂直,AB=,AF=1,M是线段EF的中点.
求证:
(1)AM∥平面BDE;
(2)AM⊥平面BDF.
如图所示,已知直三棱柱ABC—A1B1C1中,△ABC为等腰直角三角形,
∠BAC=90°,且AB=AA1,D、E、F分别为B1A、C1C、BC的中点.
求证:
(1)DE∥平面ABC;
(2)B1F⊥平面AEF.
如图所示,已知四棱锥P—ABCD的底面是直角梯形,∠ABC=∠BCD=90°,
AB=BC=PB=PC=2CD,侧面PBC⊥底面ABCD.证明:
(1)PA⊥BD;
(2)平面PAD⊥平面PAB.
如图所示,在正方体ABCD-A1B1C1D1中,M、N分别是C1C、B1C1的中点.
求证:MN∥平面A1BD.
已知ABCD是平行四边形,P点是ABCD所在平面外的一点,连接PA、PB、PC、PD.设点E、F、G、H分别为△PAB、△PBC、△PCD、△PDA的重心.
(1)试用向量方法证明E、F、G、H四点共面;
(2)试判断平面EFGH与平面ABCD的位置关系,并用向量方法证明你的判断.