游客
题文

如图,在四棱锥P-ABCD中,平面PAD⊥底面 ABCD,侧棱PA=PD=,底面ABCD为直角梯形,其中BC∥AD ,AB⊥AD,AD=2AB=2BC=2,O为AD中点.

(Ⅰ)求证:PO⊥平面ABCD;
(Ⅱ)线段AD上是否存在点,使得它到平面PCD的距离为?若存在,求出值;若不存在,请说明理由.

科目 数学   题型 解答题   难度 中等
知识点: 空间向量的应用
登录免费查看答案和解析
相关试题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角EAPB的余弦值.

如图(1),四边形ABCD中,E是BC的中点,DB=2,DC=1,BC=,AB=AD=.将图(1)沿直线BD折起,使得二面角ABDC为60°,如图(2).

(1)求证:AE⊥平面BDC;
(2)求直线AC与平面ABD所成角的余弦值.

如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.

(1)求证:AA1⊥平面ABC;
(2)求二面角A1BC1B1的余弦值;
(3)证明:在线段BC1上存在点D,使得AD⊥A1B,并求的值.

如图所示,在多面体ABCD-A1B1C1D1中,上、下两个底面A1B1C1D1和ABCD互相平行,且都是正方形,DD1⊥底面ABCD,AB∥A1B1,AB=2A1B1=2DD1=2a.

(1)求异面直线AB1与DD1所成角的余弦值;
(2)已知F是AD的中点,求证:FB1⊥平面BCC1B1.

已知函数f(x)=
(1)若x<a时,f(x)<1恒成立,求a的取值范围;
(2)若a≥-4时,函数f(x)在实数集R上有最小值,求实数a的取值范围.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号