游客
题文

小明和小芳做配紫色游戏,如图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,

(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;
(2)若出现紫色,则小明胜.此游戏的规则对小明、小芳公平吗?试说明理由.

科目 数学   题型 计算题   难度 中等
知识点: 利用频率估计概率
登录免费查看答案和解析
相关试题

某品牌牛奶专营店销售一款牛奶,售价是在进价的基础上加价 a % 出售,每月的销售额可以达到9.6万元,但每月需支出2.45万元的固定费用及进价的 2 . 5 % 的其他费用.

(1)如果该款牛奶每月所获的利润要达到1万元,那么 a 的值是多少?(利润 = 售价 - 进价 - 固定费用 - 其他费用)

(2)现这款牛奶的售价为64元 / 盒,根据市场调查,这款牛奶如果售价每降低 1 % ,销售量将上升 8 % ,求这款牛奶调价销售后,每月可获的最大利润.

如图, P 是平面直角坐标系中第四象限内一点,过点 P PA x 轴于点 A ,以 AP 为斜边在右侧作等腰 Rt Δ APQ ,已知直角顶点 Q 的纵坐标为 - 2 ,连接 OQ AP B BQ = 2 OB

(1)求点 P 的坐标;

(2)连接 OP ,求 ΔOPQ 的面积与 ΔOAQ 的面积之比.

(1)解不等式: 1 2 ( x - 1 ) > 2 + 3 x

(2)解方程组: x + y = 5 2 x + 3 y = 13

计算:

(1) | - 2 3 | - 12 + ( 1 3 ) - 2

(2) ( x - 2 ) 2 - ( x + 2 ) ( x - 2 )

在平面直角坐标系中,已知 A ( 1 , 4 ) B ( 4 , 1 ) C ( m , 0 ) D ( 0 , n )

(1)四边形 ABCD 的周长的最小值为   ,此时四边形 ABCD 的形状为   

(2)在(1)的情况下, P AB 的中点, E AD 上一动点,连接 PE ,作 PF PE 交四边形的边于点 F ,在点 E D 运动到 A 的过程中:

①求 tan PEF 的值;

②若 EF 的中点为 Q ,在整个运动过程中,请直接写出点 Q 所经过的路线长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号