如图,在矩形 中, , , 是 边上的一点,且 .
(1)用尺规在图①中作出 边上的中点 ,连接 、 (保留作图痕迹,不写作法);
(2)如图②,在(1)的条件下,判断 是否平分 ,并说明理由;
(3)如图③,在(2)的条件下,连接 并延长交 的延长线于点 ,连接 ,不添加辅助线, 能否由都经过 点的两次变换与 组成一个等腰三角形?如果能,说明理由,并写出两种方法(指出对称轴、旋转中心、旋转方向和平移距离)
如图, 为 的直径,且 ,点 在半圆上, ,垂足为点 , 为半圆上任意一点(不与点 重合),过 点作 于点 ,设 的内心为 ,连接 、 .
(1)求 的度数;
(2)当点 在半圆上从点 运动到点 时,求内心 所经过的路径长.
六盘水市梅花山国际滑雪自建成以来,吸引大批滑雪爱好者,一滑雪者从山坡滑下,测得滑行距离 (单位: 与滑行时间 (单位: 之间的关系可以近似的用二次函数来表示.
滑行时间 |
0 |
1 |
2 |
3 |
|
滑行距离 |
0 |
4 |
12 |
24 |
|
(1)根据表中数据求出二次函数的表达式.现测量出滑雪者的出发点与终点的距离大约 ,他需要多少时间才能到达终点?
(2)将得到的二次函数图象补充完整后,向左平移2个单位,再向上平移5个单位,求平移后的函数表达式.
图①是一枚质地均匀的正四面体形状的骰子,每个面上分别标有数字1,2,3,4,图②是一个正六边形棋盘,现通过掷骰子的方式玩跳棋游戏,规则是:将这枚骰子掷出后,看骰子向上三个面(除底面外)的数字之和是几,就从图②中的 点开始沿着顺时针方向连续跳动几个顶点,第二次从第一次的终点处开始,按第一次的方法跳动.
(1)随机掷一次骰子,则棋子跳动到点 处的概率是
(2)随机掷两次骰子,用画树状图或列表的方法,求棋子最终跳动到点 处的概率.
如图,在平行四边形 中, 是 边上的高,点 是 的中点, 与 关于 对称, 与 关于 对称.
(1)求证: 是等边三角形;
(2)若 ,求 的面积.