某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元) |
8 |
8.2 |
8.4 |
8.6 |
8.8 |
9 |
销量y(件) |
90 |
84 |
83 |
80 |
75 |
68 |
(1)求回归直线方程=bx+a,其中b=-20,a=
-b
;
(2)预计在今后的销售中,销量与单价仍然服从(I)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
已知函数 .
(1)讨论 的单调性;
(2)求曲线过坐标原点的切线与曲线
的公共点的坐标.
已知抛物线 的焦点F到准线的距离为2.
(1)求C的方程;
(2)已知O为坐标原点,点P在C上,点Q满足 ,求直线 斜率的最大值.
设 是首项为1的等比数列,数列 满足 .已知 , , 成等差数列.
(1)求 和 的通项公式;
(2)记 和 分别为 和 的前n项和.证明: .
如图,四棱锥 的底面是矩形, 底面 ,M为 的中点,且 .
(1)证明:平面 平面 ;
(2)若 ,求四棱锥 的体积.
某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 |
9.8 |
10.3 |
10.0 |
10.2 |
9.9 |
9.8 |
10.0 |
10.1 |
10.2 |
9.7 |
新设备 |
10.1 |
10.4 |
10.1 |
10.0 |
10.1 |
10.3 |
10.6 |
10.5 |
10.4 |
10.5 |
旧设备和新设备生产产品的该项指标的样本平均数分别记为 和 ,样本方差分别记为 和 .
(1)求 , , , ;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果 ,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).